Конвертер usb-uart: перепрошивка адаптером. Конвертер usb-uart: перепрошивка адаптером Выбираем микросхему для прибора

Как следует из названия данный прибор организует мост между компьютером через USB порт и вашим устройством по Serial протоколу. Можно сказать что он является USB COM портом для логики TTL (уровни 1.8v-5v).

С помощью данного прибор можно программировать различные микроконтроллеры, получать информацию на компьютер со прибора по serial порту. Кроме этого применений ему масса:

    управление устройством

    отладка программы

    передача небольших объёмов данных

    прошивка различных приборов -разработчики часто делают выход serial для возможности перепрошивки своего устройства

    прошивка микроконтроллеров - многие микроконтроллеры имеют Bootloader (специальная программа для загрузки прошивки по serial) загруженный на заводе, и для загрузки прошивки не нужен специальный программатор - достаточно данного устройства.

Нам он будет необходим в первую очередь для прошивки ST-Link. Ну и собственно так как тут нечего программировать - прибор состоит из одной микросхемы - то на этом приборе мы поучимся паять и работать в Kicad. В этой статье подробно рассмотрим как трассировать печатную плату вручную.

Как сделать USB UART адаптер

2. Подготовить или приобрести необходимые инструменты: все для пайки

4. Скачать необходимые файлы по данному прибору с github .

5. Изготовить плату для прибора самостоятельно (это совсем несложно, в нашей инструкции все подробно описано).

6. Приобрести все необходимые комплектующие в виде готового радиоконструктора можно в нашем магазине.

7. Запаять все компоненты на плату, смотри наше видео .

ПРИБОР ГОТОВ , можно пользоваться!

Как работает USB UART адаптер

Для реализации данного моста обычно используется специализированная микросхема, которая с одной стороны имеет usb выход, а с другой - serial выход. Обычно эти микросхемы имеют драйвера для Windows \ Linux и определяются системой как COM - порт. Дальше используется специальная программа для работы через COM порт. Это может быть и программа прошивки микроконтроллера или программа для получения данных от прибора и т. д.

Выбираем микросхему для прибора

По сути данное устройство будет состоять из разъемов, микросхемы и минимальной ее обвязки. Так что, у нас не будет никакого функционального ТЗ в данном случае. Основной критерий по которому мы будем выбирать микросхему - удобство пайки, цена.

Итак, самые распространённые микросхемы для данного девайса:

    cp2102 (cp2103) - дешевая отличная микросхема, но имеет корпус QFN28 - то есть безвыводный корпус - паять такую в самом начале пути не очень легко - поэтому мы ее не будем использовать

    pl2303 - отличная микросхемы фирмы Prolific - существует очень много вариантов этой микросхемы (в том числе китайские подделки). У нее корпус TSOP28 - отлично подходит для пайки. И старые модификации стоят недорого и отлично работают. Мы будем использовать ее - модификацiия pl2303TA - самый недорогой вариант. Есть модификация Rev. D которая не требует внешний кварц - но она стоит в 2 раза дороже.

    CH340 - китайский вариант (оригинал) моста - микросхема хорошая - но ее трудно купить где-либо кроме как в Китае.

    FT232R - микросхема от FTDI - отлично подходит и работает - но стоит почти в 2 раза дороже. Ее плюс также в том что не требуется внешний кварц.

Несколько слов о том как подобрать микросхему для своего проекта. Есть очень простой путь. Сначала необходимо найти одну микросхему которая подходит под данную задачу. Набираем в интернете - USB - serial chip и сразу находим - FT232R. Отлично. Далее идет на сайт крупного поставщика микросхем - например - mouser.com. Там в поиске набираем - FT232R. И в разделе интегральных схем видим нашу микросхему.

Самое главное для нас здесь - ЭТО КАТЕГОРИЯ в которую входит микросхема. Здесь это «ИС интерфейс USB». Также смотрим тип «Bridge, USB to UART». Идем в эту категорию и смотрим какие бывают микросхемы. Далее проверяем по datasheets подходит ли она нам.

Итак, наш выбор PL2303TA.

Составляем схему на базе PL2303

Любая схема должна начинаться с чтения Datasheet. Производитель микросхем очень заинтересован в том, чтобы купили именно его чип. В документации он обычно максимально подробно разбираем как пользоваться микросхемой, прикладывает схемы и пишет тонкости и особенности реализации прибора на этом чипе. Посмотрим что советует нам производитель (из документации на чип pl2303HXD):


тут приведена полная схема с трансивером (преобразователь уровня до 9v) для получения полного COM порта. Нам эта часть не нужна. Также схема не содержит кварца, а нам он необходим. Дополнительно можно отметить, что еще не хватает светодидов для сигнализации процесса обмена данными. В итоге поискав различные варианты схемы на данной микросхеме (pl2303 schematic) нашли самую простую схему со светодиодами и кварцев - ее и возьмем.


По сути на этой схеме сокращена обвязка USB порта (убраны высокочастотные фильтры L1 L2), убран трансивер. В остальном схема совпадает. Мы же дополнительно ещё добавим разводку всех сигнальных выводов DTR и т. д. - они могут быть полезны. Также следует отметить, что на вывод согласования уровней в нашей версии чипа нельзя подавать 5v, поэтому на разъеме уберем подальше этот вывод. Сам вывод для согласования уровней оставим - вдруг необходимо будет пользоваться UART на 1.8v. Таким образом, по умолчанию у нас будет стоять джампер соединяющий вывод 4 и 3.3v и на выходе всех сигналов UART у нас будет 3.3v. Данного напряжения уверенно хватает для определения логической 1 в 5v схеме, согласно datasheet все сигнальные ножки толерантны 5v (то есть на них можно подавать 5v смело). Так что при таком подключении схема будет работать с напряжением от 3.3в до 5в. Дополнительно оставим выводы 5v и 3.3v для питания например прошиваемого контроллера. Имейте ввиду, что без внешнего EEPROM usb порт будет отдавать только 100ma! Соответственно питать что-то существенное не получится.

С точки зрения чертежа схемы в Kicad никих особенностей нет. Проще не чертить соединения проводами, а использовать метки, тем более это будет удобно в дальнейшем при трассировке платы. В итоге получается такая схема (проект в Kicad можно скачать в конце статьи):

Разрабатываем плату в Kicad

Разрабатывая схему, можно сразу прикинуть в какой последовательности будут идти вывода на разъеме. Чтобы было проще лучше чтобы порядок соответствовал выводам на самом чипе. Но в принципе это не столь важно и можно впоследствии быстро переделать.

Прежде чем разрабатывать плату необходимо определится какие у нас будут использоваться разъемы и определить посадочные места. Мы будем делать плату переходник которая втыкается в usb порт и на конце имеет угловые разъемы PIN 2.54mm - это самый распространяенный формат. На конечный разъем мы выведем только наиболее нужные выводы - остальное просто разведем на плате и оставим как дырки на будущее. Основные выводы: RX, TX, 5V, 3.3v, DTR (часто используется как reset схемы микроконтроллера при прошивке). Остальные выводы разведем в самом конце.

Итак, начинаем трассировку платы. В схеме формируем список цепей - Инструменты - сформировать список цепей. Переключаемся в плату и по кнопке Инструменты-Список Цепей - прочитать текущий список цепей. Загружаем все посадочные места в плату. Далее размещаем все посадочные места в авторежиме. Получаем такой набор компонентов.


На данном этапе лучше скрыть лишнюю информацию. Убираем отображение слоев Связи, Скрытый текст, Значения, Обозначения.

Далее начинаем располагаем на будущей плате основные компоненты - разъемы и чип. Так чтобы выводы чипа располагались согласно подключению разъемов. Особенно важно в этом случае чтобы выводы подключения USB были напротив разъема. Наводим мышку на нужный компонент - жмем M - и переносим его чуть ниже на пустое место - формируем будущую плату. Так как плата у нас двух стороняя - то надо сразу определить нужную сторону компонент. Самый просто вариант - все DIP элементы (под которые надо сверлить сквозные отверстия) располагаем с обратной стороны, а все smd элементы с основной стороны - так проще будет подводить дорожки. Для смены стороны используем кнопку F. Так как Kicad умеет подсвечивать связи при переносе элемента, то очень удобно все резисторы связанные с разъемами размещать сразу. Это позволит быстро увидеть связи при переносе микросхемы. Итак, размещаем USB разъем, потом резисторы с ним связанные на сигнальных линиях и потом разъем на другом краю платы:


дальше размещаем чип - так чтобы было как можно меньше пересечений.


После этого размещаем кондецаторы по цепям питания - они должны быть как можно ближе к выводам питания.

После этого соединяем дорожками обязательные выводы - это usb сигнальные - кварц, кондецаторы по питанию. Прикидываем линии питания. Если что-то не удобно - то компоненты двигаем - переносим.

Например кондецатор C3 удобнее перенести вниз чтобы не делать переходное отверстие. Конечно это не очень хорошо - но в данном случае дорожка будет очень небольшая.

После размещения основных элементов размещаем оставшиеся - ориентируясь на подсказки по связям и стараясь не пересекать дорожки.


Теперь осталось разобраться с разъемами и линиями питания - их можно провести по второму слою. В итоге видно, что довольно сложно получается развести светодиоды и подтягивающие резисторы. Они перекрывают остальные выводы. Поэтому проще их перенести на другую сторону - она как раз будет лицевой, и туда же провести линию vddio.

Осталось выводы на разъеме расположить в порядке следования выходов чипа. И финально все соединить. На этом этапе плату можно сделать более компактной. Финальный вариант который получился. Можно сделать еще лучше.. но вариант удовлетворительный.

Финально остается задать диаметры переходных отверстий и толщину дорожек - лучше сделать 0.3мм. Выровнять линии и добавить земляные полигоны. Начертить границы платы.

Как пользоваться USB UART конвертером

Для пользования данных приборов в Windows необходимо установить драйвера. Свежие драйвера можно взять на сайте производителя . Если они не подходят, то можно установить более старые драйвера 1.15 - который можно найти в интернет.

После установки драйверов устройство должно определиться как COM порт.

Для Windows самая лучшая программа для работы с COM портом - это Terminal 1.9b (приложена к статье)

Для тестирования нашего устройства необходимо проводами соединить выходы TX - RX. В этом случае мы получим режим эхо - все что будет передано в порт должно тут же возвращаться назад. Скорость при это может быть любая.

Работать с программой очень просто - выбираем порт - можно автоматически по кнопке ReScan или вручную. Задаем скорость и параметры порта. Далее в окне видим все что пришло по терминалу, а в строке SEND можно передать любую информацию. Чтобы передать спецсимволы необходимо использовать запись виды «$1a» в шестнадцетиричном формате.

Для linux устройство должно определится само (драйвера входят в ядро). Неплохая программа - minicom.

Для понимая остальных сигналов данного устройства - DTR, DSR и другие - вот тут есть очень хорошая .

Как собирать прибор

Собираем прибор по общим правилам описанным в нашей статье .

Для более быстрой сборки, вы можете приобрести полный набор для пайки, радиоконструтор USB UART адаптер в нашем магазине .

Самостоятельная работа

Попробуйте осуществить трассировку самостоятельно не подглядывая в данную статью.

Это широко известная в узких кругах и всенародно любимая FT232R. Очень надежная, стабильная, поддерживаемая всеми операционными системами по дефолту. В общем, рулез.
Недостатка у ней три:

  • Дорогая, что то около 150 рублей
  • В bitbang режиме работает ОЧЕНЬ медленно, из-за чего ее нельзя применять с программатором Громова и прочих элементарных COM программаторах из говна и палок. .
  • Мелкая шо писец, паять и разводить ее так это вырви глаз. Впрочем, после QFN мне ничего не страшно. Прорвемся!

Есть еще более старая FT232BM она делает то же самое, но ей надо дофига обвязки. Кварц, еще куча кондеров всяких. Ну ее в пень.

Вот что, собственно получилось:


Это печатная плата, файл с макросом этого микроблока для Sprint Layout будет в конце статьи.
Развелось довольно легко, на удивление ноги не перекрещенные получались. Я аж удивился. Также насобачил туда светодиодов — Питание, RX и TX так что она у меня теперь косит под новогоднюю елку.

Дальше отчеканил ЛУТом планку сразу на четыре экземпляра из которых один оказался косячный. Нет, получился он идеально, что что, а по ЛУТ у меня звание не ниже старшего джедая, но почему то он был зеркальный… О_о Видать случайно ткнул на отзеркалить и не заметил.

Вот плата перед погружением в травильный раствор. Зубочистка для масштаба лежит. Ну и я ей дорожки подчищал от глянца.

Залудил при 230 градусах. Выше нельзя, крошечные пады поотлетают только так. Да и при 230 надо ОЧЕНЬ нежно и быстро. Можно было лудить сплавом Розе. Лудить тут надо, иначе риск получить непропай под выводами, а результат тут визуально не проконтролируешь.

Да, во многих девайсах где стоит COM можно выкинуть MAX232 и поставить туда FT232, но зачем плодить сущности? Если мне нужна связь с компом, то я просто оставляю RX TX GND пины и вешаю на них либо тот же MAX-шнурок, либо вот сейчас этот микроблочек. Так что одной микросхемы хватит на все времена:)

Файлы к статье:

Бонус:
Что то меня на писательство поперло, видать сказываются спирты в мозгах и отсутствие интернета — отключили за неуплату:) Пишу пока «в стол»… Дам ка краткий мануал по пайке радио пыли.

Как паять такую мелюзгу:
Когда я допетрю как закрепить фотик так, чтобы это можно было адекватно записать то будет видео. А пока на словах.

Подготавливаешь полигон:

  • В одной руке пинцет, в другой зубочистка.
  • Плата надежно закреплена на столе. Можно прям на двустороннюю липучку приклеить к столу. У меня в минитисках зажата.
  • Контактные площадки обильно смазаны флюсом.

Вначале позиционирование

  • Пинцетом максимально точно выставляем микруху на площадки. Причем нам важно чтобы хотя бы один из крайних выводов встал ровно , любой какой тебе удобней. Остальные как можно ближе к идеалу.
  • Только выставил, не отпуская пинцетом сверху прижимаешь ее острием зубочистки, крепко прижимаешь. Пальцем нельзя — палец толстый и ты ее сдвинешь, а зубочистка во первых острая и давит в одной точке, во вторых деревянная, а значит не раскрошит нежную микруху.
  • Не отпуская зубочистку я обычно ее перехватываю другой рукой (левой), а правой хватаю паяльник. Микруха при этом не шевелится ни на волос. Т.к. давление только в одной точке, вниз, то вращательному моменту там просто неоткуда взяться.
  • Припаиваю ОДИН крайний вывод.
  • Если микросхема стоит по прежнему ровно и тебя все устраивает, то тут же прихыватываешь крайний вывод с другой стороны, а потом два крайних с другого ряда.
  • Если же микруха стоит чуть криво, то ты можешь ее попробовать чуток повращать относительно припаяной ножки, чуть чуть. На доли градуса, лишь бы остальные ножки встали. Как встанут — прихватывай вторую. Ну, а дальше никуда она не денется.

Ну и припаиваешь остальные выводы:

  • Угаживаешь все выводы флюсом и взяв самую малость припоя на жало, реально мало — 1мм проволочного припоя диаметром 0.5мм. Если нет такого припоя, расплющи тот что есть в фольгу.
  • Эту капельку спокойно размазываешь по выводам. Она должна хорошо растечься не слепляя выводы. Главное флюса не жалеть.
  • Излишки припоя снимаются сухим паяльником или зафлюсованным многожильным проводочком, который впитает их в себя.

Важно!
Если вы крутили микросхему относительно какой либо ножки, то в конеце, когда припаяете остальные ножки, надо коснуться этого первого вывода паяльником, чтобы он отпаялся и снова припаялся — снять механическое напряжение, которое там могло возникнуть.

Должно получиться примерно вот так:


UPD:

За разводку спасибо Rol20

Сборка Z-Duino

Итак, начнем. Выигранный мной набор для сборки включает в себя три пакетика.

В один упакованы разъёмы, панелька для контроллера и сам контроллер - ATmega328P, в него прошит загрузчик и скетч “Blink”. Другой пакетик наполнен “рассыпухой”, среди которой есть “бомбовая” кнопочка с красным толкателем - для сброса. В третьем пакетике: качественная плата и один из светодиодов. В наборе их два: зелёный - по питанию, и жёлтый - на pin13. Внешне одинаковые, и, чтоб их не перепутать, жёлтый упакован вместе с платой, но ничего не мешает запаять их наоборот.

Сборка прошла в два этапа. Сначала запаиваю все SMD компоненты

Затем все выводные

Мне захотелось чтобы джампер выбора питания был установлен перпендикулярно плате, поэтому я выгнул выводы плоскогубцами, припаял и обкусил лишнее.

После сборки платы подаю питание: зелёный светодиод светится, жёлтый мигает. Хорошо, теперь нужен переходник для заливки скетчей. Если есть аппаратный COM порт на материнской плате, то можно взять преобразователь уровней на предназначенной для этих целей MAX232 или собрать на транзисторах (как в Arduino Severino).

Преобразователь на транзисторах повторяет схему из Arduino Severino , а для переходника на микросхеме я выбрал MAX232CPE: вместо электролитов 10uF устанавливаются керамические 100n. У микросхемы, перед монтажом, нужно отломать выводы 7 и 10, или отогнуть их в сторону.

Для использования переходника на транзисторах или на MAXе, необходимо любым удобным способом подать на плату Z-duino 5V. Я взял прямо с USB и воткнул в разъём ICSP. Джампер выбора питания нужно установить в положение 5V.

Внимание! Если Вы что-нибудь спалите или нанесёте любой вред реализуя идеи изложенные в этой статье, то ответственность за негативные последствия несёте Вы, а не автор этих идей (то есть я). Например, в примере выше, 5V с USB на контроллер поступает напрямую, минуя предохранитель и защитный диод. Осознавайте что Вы делаете, соблюдайте полярность подключения и не превышайте максимальный ток, который может выдать большинство USB разъемов компьютера, а именно 500мА.

Если нет COM порта, можно применить переходник USB-COM. Я уже писал о переходнике на mega8 распаяном на самодельной Arduino, будет фото и схема переходника на контроллере в DIP и в TQFP корпусе.

К разъёму подведены все сигналы которые обеспечивает конвертер. На схеме и чертежах плат есть предохранители типоразмера 1206 в цепи 5V от USB. У меня таких нет, вообще нет SMD предохранителей, поэтому я установил перемычки.

На двух платах перепутаны местами RX и TX, пришлось резать дорожки, паять перемычки, в чертежах плат ошибки исправлены.

О реализации варианта этого переходника на ATtiny2313 есть на getchip.net.

Наверное, кто-то уже прочитал на нашем форуме сообщения exmortis об изготовлении кабеля USB-TTL из подручных средств.

Мы решили оформить это, как отдельную статью-руководство. Спасибо exmortis за предоставленный материал.

Аннотация: Данная статья является дополнением к по последовательному интерфейсу, которую рекомендуется предварительно прочесть.

Как известно из вышеупомянутой статьи, приставку Ritmix RZX-50 можно подключить к компьютеру через uart ttl, но так как сигналы по вольтажу не совпадают со стандартом rs-232, то нужен переходник. В качестве готового решения можно воспользоватья специальным конвертером, например, или даже таким .

Сложность в том, что подобные решения могут быть далеко не всегда доступны, а при их наличии заявленная цена может быть достаточно высокой.

Однако, можно приспособить обычный кабель-переходник usb-rs232 (com), который продаётся в любом компьютерном магазине. Например, такой:

Кабель Gembird usb-rs232 uas111. Он удобен тем, контроллер спрятан в аккуратную коробочку. Правда, она запаяна, поэтому для вскрытия придётся либо её распиливать, либо срезать пластик паяльником.

В принципе, подойдёт любой другой подобный кабель, однако, нужно обращать внимание на удобство доступа к плате с контроллером. На некоторых кабелях она спрятана в разъёме rs-232, вскрывать который затруднительно, а на других может оказаться микросхема-капля, подпаятся к которой непросто. В конце-концов такой кабель может быть основан на каком-нибудь экзотическом чипе.

Микросхема pl2303. Интересны прежде всего ноги 1 (TXD) и 5 (RXD), нумерация ног идёт против часовой стрелки от угла, отмеченного на самом чипе точкой.

Обратная сторона с чипом max213. Cигнал от 1-ой ноги pl2303 приходит на 6-ю ногу max’а, а сигнал от 5-ой — на 19-ю ногу «максимки».
В принципе, эта микросхема для uart-ttl не нужна, она даже может помешать. Поэтому её нужно аккуратно выпаять, и тем легче будет подпаиваться к контактным площадкам.

Микросхема max213 выпаяна. Красный провод припаян к сигналу TXD, жёлтый — к RXD, чёрный провод — земля. Впоследствии можно подключать по схеме Antony, присодиняя провода «перкрёстно», т.е. RXD контроллера к TXD приставки, а TXD к RXD соответственно.

Выводы последовательного интерфейса у Ritmix RZX-50.

Вторая немаловажная часть — непосредственное подсоединение к компьютеру и настройка соединения.
Ниже будет рассмотрена специфическая ситуация, когда на компьютере (ноутбуке) установлена W7 x64, а в виртуальной машине VirtualBox — Xubuntu 11.10 x32. Всё нижеописанное также справедливо для любых дистрибутивов linux.

Перепаянный как указано выше кабель подсоединяется к компьютеру (при этом rzx-50 НЕ подключена). Естественно, что драйвер системой не установится, но это и не требуется. Загружаем xubuntu в виртуальной машине, пробрасываем вовнутрь подсоединённое устройство (должно обозначаться как Prolific Technology Inc. USB-Serial Controller). После чего загружаем консоль и вводим dmesg. Одной из последних строчек должно оказаться определение подключённого устройства (pl2303) и его отражение на файловую систему — в данном случае это /dev/ttyUSB0. Запоминаем это имя.

Теперь надо установить minicom. Команда стандартная: «sudo apt-get install minicom». Запускаем настройку: «sudo minicom -s» и попадаем в меню конфигурации. В Serial port setup устанавливаем /dev/ttyUSB0 в качестве Serial Device, скорость потока устанавливается 56700 8N1, hardware и Software Flow Control выключается (No). Далее в Modem and dialing нужно стереть строки Init String и Reset String.

Выходим из настройки и запускаем minicom в обычном режиме (sudo minicom). Теперь можно протестировать кабель, замкнув провода от сигналов TXD и RXD. Если при нажатии любых клавиш в minicom на экране появляются соответствующие символы, значит кабель работает.

Теперь можно подсоединять приставку к проводам способом, указанным выше, и включить её, наслаждаясь выводом в окно эмулятора терминала. Когда выпадёт приглашение ввести пароль, следует ввести «root». Если при вводе и выводе символов периодически появляются мусорные или посторонние, значит что-то не так с землёй (скорей всего оборвана). В идеаля земля также никак не должна замыкаться с сигналами TXD и RXD.

От редакции: Я лично сразу вспомнил конец 90ых, когда началась эпоха Palm. В то время я был счастливым обладателем Handspring Visor Deluxe, мощнейшим, по тем временам КПК (слово «планшет» еще не придумали). Так вот, в силу дефицита USB портов (да! да!) приходилось самому изготавливать кабель RS232-TTL. Более того, поскольку сигналы у Visor были трехвольтовые, а микросхема Maxim, обеспечивающая нужный уровень сигнала была дефицитной — приходилось на ножку «выхода» вешать делитель напряжения с 5 до 3.3в, чтобы не спалить устройство.

Сейчас все гораздо проще, и можно сосредоточиться на более содержательной деятельности, например внести посильный вклад в создание альтернативной прошивки для RZX-50 🙂

LPT и COM порты уже большая редкость на современных стационарных компьютерах, а про ноутбуки то и говорить нечего. USB медленно, но верно вытеснила их, усложнив жизнь разработчикам и упростив пользователям. Эх, как приятно было когда-то подключить микроконтроллер к COM порту компьютера, используя всего лишь max232 и не заботясь о драйверах. Еще чуть-чуть и это будет возможно только на промышленных компах.

Следуя общей тенденции, производители микросхем стали выпускать доступные микросхемы для работы с USB. Такие как USB-UART преобразователи или микроконтроллеры с поддержкой этой шины. К сожалению последние, несмотря на наличие библиотек, все еще сложны в освоении, поэтому неискушенному инженеру проще использовать первый вариант. И в этой статье мы рассмотрим две подобные микросхемы - FT232 и CP2103 и схемы преобразователей на их основе.

USB-UART преобразователь на FT232RL

Микросхема FT232RL фирмы FTDI пользуется заслуженной популярностью в инженерных кругах. Она предоставляет пользователю возможность создания полноценного COM порта, имеет функцию управления отдельными выводами, драйвера, простую схему включения с минимальным количеством дополнительных элементов и приемлемый для пайки корпус. Также дополнительным плюсом этой микросхемы, является возможность программирования ее EEPROM памяти, в которой можно изменить некоторые параметры USB устройств. Из недостатков можно отметить ее высокую цену ~120-150 рублей, которая вполне сравнима с ценой на микроконтроллер atmega.
Я сделал на FT232RL свой вариант USB-UART преобразователя. Все пользовательские выводы развел на PLS`ку по краям платы. Расстояние между PLS выбрал таким, чтобы можно было втыкать переходник в макетную плату. Выводы RXD и TXD, предназначенные для подключения UART`a микроконтроллера, развел на отдельную PLS для удобства подключения. Также на плату помесил 2 светодиода, для индикации процесса передачи/приема информации микросхемой FT232RL, и перемычки для выбора напряжения питания выводов. Оно может быть пяти или трех вольтовым. USB разъем взял в мини исполнении, USB-B слишком громоздкий. Плату развел в одном слое, с тремя перемычками.

Схема USB-UART переходника на FT232RL


Внешний вид полученного девайса

Если ты соберешь этот USB-UART переходник, то не спеши сразу втыкать его в USB порт. Перед работой нужно убедиться в отсутствии замыканий между плюсом питания, землей и выводами D+, D-. Возьми тестер и прозвони их. Если замыканий нет, визуально проверь другие вывода и только после этого можешь подключать переходник.

При первом включении операционка попросит установить драйвера. Их можно скачать с официального сайта производителя - драйвер для FT232 . Установка драйверов не представляет никакой сложности, поэтому говорить об этом не будем.
Когда драйвер установится, в системе появится дополнительный COM порт. Это так называемый виртуальный COM порт, но его можно использовать точно так же как и обычный. Чтобы увидеть его порядковый номер, нужно залезть в диспетчер устройств, если у тебя винда. Заходишь в панель управления, выбираешь система > диспетчер устройств. В разделе "Порты (COM и LPT)" должен находиться наш переходник - "USB Serial Port (COM10)". У тебя может быть какой-нибудь другой номер порта.
Чтобы убедиться в работоспособности переходника нужно открыть любую терминальную программу, выбрать соответствующий COM порт, замкнуть джампером выводы RXD и TXD и отправить через терминал любую последовательность символов. Если переходник функционирует, терминал примет ответ в виде эха, а на плате кратковременно вспыхнут светодиоды.
Для подключения переходника к микроконтроллеру, нужно вывод RXD микроконтроллера соединить с выводом TXD переходника, а вывод TXD микроконтроллера с выводом RXD переходника. Также нужно соединить их земли.

USB UART переходник на CP2103

Микросхема CP2103 фирмы Silicon Labs - это по сути аналог FT232. Имеет простую схему включения с минимальным количеством внешних компонентов, позволяет организовать полноценный COM порт со всеми его сигналами, имеет дополнительные пользовательские выводы и программу для их конфигурации, драйвера, маленькие габариты и более демократичную цену. Из недостатков стоит отметить мелкий и неудобный для запайки в домашних условиях корпус. Пожалуй, это главная причина непопулярности этой микросхемы в среде самодельщиков.
Ради интереса я сделал USB UART преобразователь и на ее базе. Все пользовательские выводы развел на PLS`ки по краям платы. RXD и TXD вывел на отдельный разъем. Джампер для выбора напряжения питания выводов здесь не понадобился, так как это напряжение не может быть большее 3.6 В. USB разъем выбрал в мини исполнении, плату развел в одном слое с четырьмя перемычками на обратной стороне. Светодиоды для индикации передачи/приема данных не сделал, потому что микросхема CP2103 не имеет выделенных для этих целей выводов. Можно задействовать любые пользовательские выводы, но их нужно конфигурировать с помощью специального софта. Когда я это узнал, переходник уже был готов и переделывать его было лень, особенно после мучений с запайкой. Единственное, что я добавил из индикации - это светодиод по питанию.


Схема USB-UART преобразователя на CP2103


Внешний вид полученного девайса

Я немного помучился с изготовлением этого переходника. Во первых между ножками CP2103 очень маленький зазор, нужно аккуратно делать плату. Во вторых ее сложно припаять. Если бы у меня не было фена, я бы за это вообще не взялся.
Запаивал я ее следующим образом. Залудил плату сплавом Розе. Он плавится при 100 градусах, что позволяет избегать перегрева платы и микросхемы. Обильно смочил посадочное место микросхемы флюсом и положил ее туда. Используя увеличительное стекло и пинцет, кое-как сориентировал ее по посадочному месту. Далее стал нагревать микросхему феном с температурой ~150-200 градусов. Когда припой расплавился, микросхема стала шевелиться и за счет сил поверхностного натяжения заняла точное положение на посадочном месте. Получилось очень ровно, но переходник не заработал. Я повторно нагрел микросхему и слегка придавил и пошевелил пинцетом. После этого микросхема сконтактировала с дорожками платы.
После сборки переходника нужно убедиться в отсутствии замыканий между плюсом питания, землей и выводами D+, D-, а затем между остальными выводами. Поскольку микросхема очень маленькая, между выводами легко может сесть сопля. После проверки выводов, USB UART переходник можно подключать к компьютеру.
Как и с предыдущем переходником, при первом включении система предложит установить драйвера. Скачивай их с официального сайта производителя - драйвер для CP2103 .
Установленный переходник определяется в диспетчере устройств в разделе "Порты" как "Silicon Labs CP210X USB to UART Bridge (COM6)". У тебя может быть другой номер порта.
Работоспособность проверяется аналогично, повторяться не буду.

Альтернативные варианты USB-UART адаптеров

Альтернативные варианты адаптеров можно сделать на микросхемах FT230XS и CP2102. Это урезанные и соответственно более дешевые аналоги FT232 и CP2103. Обе микросхемы имеет меньшее число пользовательских выводов и не совпадают по распиновке.

Файлы

Ссылки

Софт для настройки FT232RL - FT Prog
Софт для настройки CP2103 - Customization Utility Много весит!