Микросхема управления звуком. Электронный стереорегулятор громкости на микросхеме КА2250. Схема электрическая кнопочного регулятора

Наметившаяся в последнее время тенденция электронного ступенчатого регулирования громкости с использованием коммутации матрицы дискретных резисторов с помощью счетчиков, дешифраторов и аналоговых коммутаторов открывает широкие возможности для создания многоканальных звуковоспроизводящих устройств с практически идентичными характеристиками регулирования. Однако подобные регуляторы обладают недостаточной плавностью регулирования, их выходные сопротивления существенно изменяются в процессе регулировки, а потребляемая ими мощность часто оказывается довольно значительной. Перечисленные недостатки сдерживают применение регуляторов громкости с электронным управлением в высококачественной звуковоспроизводящей аппаратуре.

Автору статьи удалось разработать регулятор громкости, обладающий широким диапазоном регулирования с дискретностью почти на порядок меньше, чем в аналогичных устройствах, описанных в литературе, имеющий небольшие габариты, простой в налаживании. Характеристика регулятора линейна во всем диапазоне регулирования, что особенно важно при малых уровнях громкости. Сигнал можно регулировать в каждом канале отдельно либо в обоих одновременно. Предусмотрены два режима регулирования: пошаговый (громкость изменяется на одну ступень регулирования при каждом нажатии на управляющую кнопку) и автоматический (громкость изменяется в заданную сторону с определенной скоростью).

Основные технические характеристики:

Число каналов регулирования: 2

Диапазон регулирования: не менее 60 дБ

Шаг регулирования: не более 0,24 дБ

Ток потребляемый от источника напряжением +15 В/-15 В: не более 15/6 мА

Принципиальная схема регулятора приведена на рис.1. Громкость регулируется с помощью кнопок без фиксации в нажатом положении SB1- SB4. Их "дребезг" устраняет микросхема DD3. Регулятор содержит также генератор тактовых импульсов на элементах DD1.1 и DD2.1 и двухканальное устройство, каждый канал которого состоит из RS-триггера на элементах DD1.2, DD1.3 (DD4.1, DD4.2), реверсивных счетчиков на микросхемах DD7, DD9 (DD8, DD10), интегрального цифроаналогового преобразователя на микросхемах DA1 (DA2), выходного усилителя на ОУ DА3 (DА4), устройства блокировки случайного перехода от максимальной громкости к минимальной и наоборот на элементах DD2.3 (DD5.2), узла автоматического регулирования на элементах DD1.4, DD2.4 (DD4.3, DD5.3) и элементов DD2.2 (DD5.1), обеспечивающих пошаговый режим.

Работает регулятор следующим образом. При включении питания происходит начальная установка счетчиков обоих каналов регулятора. Прямоугольные тактовые импульсы частотой около 20 Гц с выхода генератора поступают на вход синхронизации микросхемы DD3 (вывод 5). Поскольку остальные ее входы (выводы 4, 14, 7, 13) через резисторы R1-R4 соединены с общим проводом, на выходах этой микросхемы (выводы 2, 1, 10, 11) записываются уровни логического 0. Дальнейшая работа регулятора зависит от того, какую кнопку нажмет оператор. Чтобы обеспечить пошаговый режим регулировки громкости, достаточно однократно нажать на соответствующую функциональную кнопку и затем отпустить ее.

При нажатии на кнопку "+" канала 1 (SB1) на выводе 2 микросхемы DD3 появляется логическая 1. Вследствие этого на выходе элемента DD2.2 устанавливается логический 0 и импульс, поступающий через элемент DD6.1 на выводы 15 счетчиков DD7, DD9, увеличивает состояние последних на 1.

При нажатии на клавишу "-" канала 1 (SB2) логическая 1 появляется на выводе 1 микросхемы DD3 и состояние счетчиков DD7, DD9 уже уменьшается на 1, поскольку с выхода RS-триггера на элементах DD1.2, DD1.3 на выводы 10 счетчиков DD8, DD9 поступит уровень логического 0.

Автоматический режим требует оперирования двумя кнопками. Для регулирования уровня громкости в нужную сторону сначала следует нажать на кнопку с соответствующим функциональным действием, а затем – на вторую кнопку этого канала. При достижении желаемой громкости обе кнопки нужно отпустить.

Так, при нажатии на кнопки SB1, SB2 устанавливается автоматический режим регулирования в первом канале. На выводах 2 и 1 микросхемы DD3 появляются уровни логических 1, вследствие чего на выходе элемента DD1.4 устанавливается уровень логического 0 и тактовые импульсы с генератора начинают проходить на счетный вход счетчиков DD7, DD9. Конденсатор С5 (С6) повышает помехоустойчивость счетчиков при переключении режимов счета.

Выходы двоичных реверсивных счетчиков DD7, DD9 подключены непосредственно к входам управления интегральными ключами цифроаналогового преобразователя DA1. Ключи коммутируют резисторы выполненной интегральным способом матрицы типа R-2R, выход которой нагружен на инвертирующий вход DA3. Благодаря ООС с выхода DA3 на вывод 16 микросхемы DA1 уровень напряжения на выходе регулятора изменяется плавно и с высокой стабильностью. Выходное сопротивление регулятора при этом остается постоянным и определяется выходным сопротивлением ОУ DA3.

На выходе элемента DD2.3 уровень логического 0 присутствует до тех пор, пока на выходах переноса счетчиков (выводы 7) будет уровень хотя бы одной 1. Состояние логического 0 устанавливается на выходах переноса, когда на выходах счетчиков DD7, DD9 (выводы 6, 11, 14, 2) возникает состояние 1111 при увеличении счета и 0000 при его уменьшении. Такая работа счетчиков обеспечивает блокировку элемента DD6.1 и делает невозможным переход от уровня максимальной громкости к минимальной и наоборот. Второй канал работает аналогично первому.

Все детали регулятора, кроме кнопок SB1-SB4, размещены на печатной плате размерами 80х70 мм: а) – вид со стороны установки микросхем, б) – с противоположной стороны, в) иллюстрирует расположение элементов на плате. Последняя крепится к передней панели аппаратуры, вблизи от входа оконечного усилителя (для уменьшения уровня фона).

Плата рассчитана на использование резисторов МЛТ, конденсаторов КМ-6 и К50-16. Кнопки SB1-SB4 без фиксации – ПКН-150-1. Вместо указанных элементов можно применить любые малогабаритные близких номиналов – резисторы ВС, ОМЛТ, конденсаторы К10-7В, K50-6, K53-19, кнопки П2К.

Налаживать регулятор практически не требуется. При необходимости скорость автоматического регулирования можно увеличить, уменьшив сопротивление резистора R5 либо емкость конденсатора С1.

Регулятор сохраняет работоспособность без ухудшения параметров при снижении питающего напряжения до ±5 В.

С развитием стереотехники резко обострилась одна из проблем аналоговой аппаратуры - низкое качество и небольшой ресурс работы переменных резисторов, служащих регуляторами громкости. И если для моноаппаратуры еще можно подобрать переменный резистор на замену вышедшему из строя, то для стерео, особенно импортной, это практически нереально.

Электронные регулятор громкости

Найти «примерно такой же» резистор очень сложно даже в крупных городах. Причем чаще всего «ломаются» резисторы регуляторов громкости. Регуляторы тембра и баланса используются реже и служат гораздо дольше. К счастью, полный выход из строя сдвоенного («стерео») переменного резистора случается крайне редко. Обычно хотя бы один из резисторов полностью или частично исправен. И, «зацепившись» за эту часть регулятора. можно «вылечить» все устройство!

При этом даже не придется переводить систему в монофонический режим-достаточно просто добавить специальную микросхему электронного регулятора громкости. Такие микросхемы сравнительно дешевы, почти не искажают звук и практически не требуют подключения внешних элементов. С их помощью автор в свое время вернул жизнь не одному десятку различных магнитол, и ни один владелец не остался разочарованным.

Как правило, подобные микросхемы управляются напряжением. Изменяя напряжение на специальном входе микросхемы с помощью переменного резистора {или того, что от него осталось), мы изменяем громкость фазу в обоих каналах, причем линейность и синхронность ее изменения гораздо выше, чем при использовании сдвоенного переменного резистора.

Знать, как именно устроены подобные микросхемы - совершенно не обязательно (фактически, это с электрически изменяемым коэффициентом усиления), нужно только помнить, что при уменьшении напряжения на регулирующем входе громкость обычно также уменьшается. И даже если переменный резистор «восстановлению не подлежит» - тоже не все потеряно. В таком случае можно использовать цифровой регулятор громкости, который управляется кнопками.

Такие регуляторы бывают двух типов: автономные и требующие использования дополнительного процессора. Первые (например, КА2250, ТС9153) регулируют только громкость. «Качество регулировки» - довольно скверное, но их стоимость сравнительно невелика. «Процессорные» регуляторы раза в два дороже автономных, но гораздо «круче»: и регулировка более линейная, и, помимо регулировки громкости, можно регулировать тембр, баланс, звуковые эффекты (псевдостерео - стерео из моносигнала, как у TDA8425 или псевдоквадра-стерео в микросхемах серии ТЕАбЗхх).

Есть также селектор каналов на входе и некоторые другие «примочки». Но распространение таких регуляторов, даже несмотря на весьма выгодное соотношение цена- качество, ограничивает необходимость использования внешнего, заранее запрограммированного процессора. Специализированные запрограммированные процессоры для работы с подобными микросхемами автор в продаже не встречал.

Большинство микросхем с электронной регулировкой громкости предназначены для работы в кассетном магнитофоне. Они имеют пару чувствительных и малошумящих , пару с электронной регулировкой громкости, и рассчитаны на низковольтное питание (1,8…6,0 В при потребляемом токе около 10 мА).

Схема регулятора громкости на микросхеме TA8119P

Таковы микросхемы ТА8119Р ф.TOSHIBA (рис.1) и ВАЗ520 ф.POHM(рис.2). Как видно из рисунков, отличаются они только количеством выводов, а электрические характеристики у них практически совпадают. Кстати, ИМС ТА8119 выпускается только в DIP-корпусе для монтажа в отверстия. а ВА3520 - в DIP- и SOIC-корпусах (соответственно, ВА3520 и BA3520F, последняя-для поверхностного монтажа). Расстояние между рядами выводов у ТА8119 и SOIC-версии BA3520F - 7,5 мм. у ВА3520 в DIP-корпусе -10 мм.

Цифровой регулятор громкости на BA3520

Операционные усилители (ОУ) внутри - обычные, с той лишь разницей, что некоторые резисторы обратной связи уже установлены в микросхеме. Выходной ток предварительных усилителей - несколько миллиампер, выходных - около сотни миллиампер. На рисунках указаны рекомендуемые схемы включения, но, в принципе, ОУ можно включать по любой стандартной схеме, за исключением, разве что, дифференциальной.

Если слишком большое усиление не требуется, предваритепьные уси- лители можно не использовать, подав входной сигнал непосредственно на выходные усилители (их коэффициент усиления при максимальной громкости - около 7). При этом входы предварительных усилителей желательно соединить с выходом REF микросхемы. Если использовать эти микросхемы для замены переменного резистора, сигнал на входы лучше подавать через резисторы сопротивлением около 100 кОм (для компенсации усиления выходных усилителей), как показано на рис.За.

И вообще, во всех схемах с использованием ВА3520 сигнал на входы оконечных усилителей лучше подавать через резисторы сопротивлением не менее 10 кОм. Это значительно уменьшает шумы на выходе (микросхема «не любит» слишком низкоомные источники сигнала), но выход предварительного усилителя микросхемы можно соединять со входом оконечного непосредственно. К ТА8119 это тоже относится, хотя выражено гораздо слабее.

Для более плавной регулировки громкости в микросхеме ТА8119Р и ВА3520, а также для устранения «шороха» при вращении движка переменного резистора, между движком и общим проводом рекомендуется включить конденсатор емкостью 1…10 мкФ («+» к движку). При «частичной неисправности» переменного резистора (перегорела или истерлась дорожка возле одного из крайних выводов) можно «выкрутиться», несколько усложнив схему.

Переменный регулятор громкости на резисторе, транзисторе, микросхеме

Если перегорел контакт, к которому подводится движок резистора для установки минимальной громкости, используется схема на рис.36 или рис.Зв. Здесь резисторы R1 и R2 образуют делитель напряжения. Но следует отметить, что напряжение в средней точке такого делителя никогда не уменьшится до нуля: при указанных номиналах резисторов оно превышает 0,3 В. т.е. «нулевая» громкость недостижима.

Для устранения этого недостатка в схему добавлен повторитель на транзисторе VT1. При таком напряжении он все еще закрыт (порог открывания - около 0.6 В). В схеме на рис.3б достичь максимальной громкости также невозможно из-за упомянутого выше падения напряжения на транзисторе (около 0,6 В). Поэтому лучше использовать схему, изображенную на рис.3в.

Источник питания (+5 В) должен быть стабилизированным - иначе громкость будет «плавать». При настройке этой схемы, возможно, понадобится подобрать сопротивления R3 и R4 для получения максимальной громкости. Если же перегорел «верхний» вывод переменного резистора, схема для его «лечения» становится еще проще (рис.Зг). Источник питания тоже должен быть стабилизированным.

Но если переменный резистор «восстановлению не подлежит», единственный выход - использование цифровых регуляторов. В принципе, такие регуляторы можно построить и на обычной цифровой логике, пропуская звуковой сигнал через микросхему цифро-аналогового преобразователя (ЦАП). Подобные схемы неоднократно публиковались в отечественной литературе начала 90-х годов, но дешевле и удобней воспользоваться специализированной микросхемой, например, КА2250 (Samsung) или ТС9153 (Toshiba).

Регуляторы громкости на ЦАПе КА2250, ТС9153

Эти микросхемы - полные аналоги по электрическим характеристикам и цоколевке (рис.4), отличия только в названии. Они являются 5-битным стереоЦАПом (шаг регулировки - 2 дБ) с довольно скзерными характеристиками регулирования и не очень сложной схемой управления. Что радует - крайне низкие искажения. По этому параметру микросхемы практически не отличаются от переменного резистора, естественно, если амплитуда входного сигнала не превышает 1,5…2,0 В и правильно разведены «земли».

Также предусмотрено «запоминание» уровня громкости при отключении питания, но в ячейке ОЗУ, т.е. для подпитки самой микросхемы нужна батарейка или конденсатор с малой утечкой.
Для нормальной работы этих микросхем требуется внешний источник образцового напряжения (UREF)- Если у источника сигнала (предварительного усилителя) есть свое UREF. тогда просто подводим его к выводам 4,13 микросхемы (рис.4а). Если же его нет, «сооружаем» внешний делитель напряжения (R1-R2- С1 на рис.4).

В обоих случаях напряжение на выводах 4 и 13 должно быть на 1…2 В меньше напряжения питания, но выше 1…2 В относительно общего провода. Напряжение UREF d каждом канале может быть разным. Собственно регулятор громкости состоит из пары резисторных матриц, коммутируемых через высококачественные полевые транзисторы.

На рисунке эти матрицы обозначены как постоянные резисторы. Для нормального функционирования микросхемы обе матрицы должны быть соединены последовательно и, желательно, через разделительный конденсатор (С4). Так как матрицы содержат только резисторы, то, в принципе, «вход» и «выход» можно поменять местами (что иногда можно обнаружить даже в «фирменных» изделиях), но лучше этого не делать.

Цифровая часть микросхем состоит из генератора с внешними частотозадающими элементами КЗ-С7, двух кнопок SB1, SB2 и коммутатора на диодах VD1, VD2. Громкость изменяется при нажатии и удерживании соответствующей кнопки. У микросхем имеется цифровой выход. Ток через этот выход изменяется от 0 до 1,3 мА (с шагом 0,1 мА) при уменьшении/увеличении громкости. Вывод 7 микросхем служит для «выключения» - при «нуле» на этом входе генератор отключается, а потребляемый микросхемами ток уменьшается до минимума.

«Регулирующая» часть микросхем при этом работает как обычно, но изменять громкость невозможно. Для того, чтобы при отключении питания микросхема «запоминала» уровень громкости, ее желательно подключать так, как показано на рис.46. При отключении питания напряжение на входах «Uпит» уменьшается до нуля, одновременно снижается напряжение на выводе 7, и цифровая часть микросхемы «отключается».

Сама микросхема при этом питается через батарейку, ее заряда хватает на десятки лет. В принципе, использовать батарейку не обязательно - достаточно одного конденсатора емкостью более 1000 мкф, но даже самый лучший конденсатор не «продержится» более недели. Конденсатор С2 служит для начального сброса микросхемы при включении питания, поэтому он обязателен и должен располагаться в непосредственной близости от выводов питания микросхемы.

Продолжение статьи находится

На микросхеме TDA1552 для управления звуком? Обычный сдвоенный резистор. А если у нас квадровключение на 4 канала? Кто-то подсказывает - счетверённый регулятор:) А если мы собрали домашний кинотеатр на 6 каналов? Тут уже в бой вступают сложные и дорогостоящие электронные регуляторы громкости на специализированных микросхемах. И такой узел по сложности и цене может превосходить сам усилитель. Тем не менее есть простой выход, как реализовать функцию управления громкостью всего на одном транзисторе. Предлагаемая ниже схема из журнала радиолюбитель, позволяет одним переменным резистором управлять громкостью сразу нескольких каналов.

На одной схеме показан один канал ргулятора громкости, а на другой - сразу 4 канала. Естественно их может быть и 5, и 10. Суть метода заключается в том, что подавая на базу транзистора положительный потенциал через резистор, транзистор открывается и шунтирует вход УНЧ - громкость снижается.


С этой схемой был проведён ряд экспериментов. Выяснилось, что питание базы можно брать начиная от 1,5В. Максимальный предел напряжения определяется ограничительным резистором на 1кОм. Если мы нашли в допустим 12В, то и резистор надо увеличить до безопастных для базового тока 30кОм. Ток потребления базовой цепи в открытом состоянии - несколько миллиампер. В общем подберёте.

В открытом состоянии транзистора, возможно будет слышен очень тихий звук из-за падения напряжения на кремниевом кристалле. Чтоб молчание было полным - нужно использовать германиевый транзистор типа МП36 - МП38.


Конденсаторы на входе и выходе электронного регулятора громкости используют неполярные. Транзистор ставим любой маломощный Н-П-Н, типа КТ315, КТ3102, С9014 и т.д. Переменный резистор для электронного регулятора на сопротивление в пределах 10-100кОм. Желательно с линейной характеристикой.

При замыкании движка на массу, все транзисторы закроются и громкость станет максимальной. Перемещая движок к плюсу питания, мы понемногу открываем транзисторы и звук станет затихать. Резистором, что подключен к плюсу питания, выставляем плавность изменения громкости по всему повороту резистора. Чтоб не было так, когда уже после половины поворота громкость исчезла и дальше крутим напрасно. Использование данного электронного регулятора громкости с одной стороны немного увеличит уровень шумов, но с другой - снизит наводки на провода, так как теперь нет необходимости тянуть два раза экранированный провод от выхода предварительного усилителя до входа усилителя мощности.

Вариант 1

Микросхема усилителя НЧ TDA2030A фирмы ST Microelectronics рис.1.


Вариант 2

Усилитель на TA8215

:









Монтаж и подбор деталей:

Вариант 3

Блок питания:


Вариант 4

Усилитель мощности


Вариант 5

Смотрим схему:


Вариант 6

Вариант 7

Жучок

параметры :
Iпотр=25-30мА при Uпит=9В


Вариант 8

Вариант 9

Вариант 10

Вариант 11

Вариант 12

Вариант 13

Вариант 14

Вариант 15

Вариант 16

Вариант 17

Радиопередатчик от розетки

Данная схема при минимуме радиодеталей обладает достаточно хорошими качествами:
большая чувствительность микрофона (в комнате слышно тиканье настенных часов),
при длине антенны 100 см дальность составляет 500 метров (при использовании мобильного телефона с встроенным FM - радио).

Правильно собранная схема должна заработать сразу, вся наладка заключается в подстройке частоты, путём сжатия и раздвигания витков катушки L1 и в подборе сопротивления R7 (100 Ом – 1кОм) для достижения максимальной мощности.
C4 можно поставить большей ёмкости, в этом случае он ещё лучше будет сглаживать пульсации. Блок питание следует отгородить от передатчика алюминиевым экраном.
Рекомендую поэкспериментировать с ёмкостью C6 и C3, подбирая их так, чтобы в приёмнике практически не было гудения.

L1 - 6 витков медного провода, диаметром 0.5 мм
VD1 - стабилитрон, типа КС168 (можно любой другой на напряжение 6,8V)
VT1, VT2 - транзисторы, типа КТ315, можно КТ3102, КТ368.


Вариант 18

Автомобильный радиосторож

В связи с ростом числа автомобилей и отдаленностью гаражей от квартир актуальным стал вопрос охраны машин в ночное время во дворах домов. Если угнать автомобиль довольно сложно, то снять эмблему, вытащить магнитолу или аккумулятор не составляет большого труда. Большинство противоугонных устройств усложняют только запуск мотора автомобиля, но не защищают от, хищения содержимого.

Есть устройства, срабатывающие на качание, исполнительным узлом которых является сирена или автомобильный сигнал. В ночное время они будят не только хозяина, но и соседей. Отключение аккумулятора полностью выводит такие устройства из строя.

От всех перечисленных недостатков свободен предлагаемый радиосторож. Рассмотрим его работу.


Радиосторож состоит из высокочастотного генератора, модулятора и датчика качания. В дежурном режиме датчик качания разомкнут, и питание подается только на генератор. Приемник, находящийся в квартире, настраивается на несущую частоту генератора по пропаданию шумов в громкоговорителе.

Таким образом, даже при отключении аккумуляторе срабатывание радиосторожа определяется по резком) возрастанию шумов, и это также является признаком исправности линии "машина - квартира".

При прикосновении к автомобилю кратковременно замыкается датчик качания В1 (Рис.2). Через его контакты подается питание на модулятор и заряжается конденсатор С 1.

После размыкания контактов датчика питание модулятора осуществляется от конденсатора до следующего замыкания. Напряжением затухающих низкочастотных колебаний с выхода модулятора осуществляется модуляция высокочастотного генератора. При этом в приемнике раздается громкий прерывистый сигнал тревоги. Частота высокочастотного генератора определяется частотой кварца (3..5 гармоники) и находится в диапазонах 64...75 МГц или 88...108 МГц для европейского стандарта. Катушка L1 имеет 6 витков провода ПЭЛ 0,6 на каркасе диаметром 6 мм. Катушка связи L2 - 2 витка ПЭЛ 0,3. Радиус действия радиосторожа из салона автомоби ля без подключенной антенны - до 50 м. Несколько таких устройств были испытаны в работе в течение 2 лет и показали надежную работу.


Вариант 19

Feedback для мыши

В терминологии Logitech это iFeel – выдача вибрации различной амплитуды и ритма. Как–то, начитавшись обзоров, купил Logitech iFeel MouseMan и попробовал играть – большего разочарования трудно представить. Мышь тяжелая, неудобная, iFeel невыразительный. Через полчаса заболела кисть, чего никогда не случалось. Это было давно и я благополучно забыл этот страшный сон. Подробнее о технологиях "Feedback" (отдача) можно почитать на сайте Immersion. Недавно мне попался на глаза виброзвонок от какого–то сотового телефона и появилась мысль – получить аналогичный эффект, но без жутких драйверов Immersion. Сделал схему, фильтрующую НЧ составляющие и отправляющую их на виброзвонок.

Схема состоит из двух частей – фильтр низких частот (ФНЧ) на первой половине LM358 и усилителя-выпрямителя на второй половине LM358. ФНЧ выполнен на C3, R3, C4, R4; цепь R1, R2, C1 задает смещение 1/2 питания для нормальной работы фильтра. Резистором R9 регулируется уровень сигнала. Конденсатор C2 снимает постоянную составляющую и на вход выпрямителя приходит переменное напряжение с нулем на земле. Это весьма удобно, т.к. надо получить на выходе не переменный, а выпрямленный сигнал. Выпрямитель берет обратную связь с выхода, что уменьшает вредоносное влияние виброзвонка. У меня применен виброзвонок с внутренним сопротивлением по постоянному току 30 Om, рабочее напряжение 3V. Выпрямленное напряжение не сглаживается конденсаторами и это сделано специально – так меньше инерционность и как–то сказывается ритм, форма и частота на характер вибрации.

Конденсаторы и резисторы могут быть любыми, только C3 должен быть с малым током утечки, т.е. не электролитический. Транзистор Q1 любой npn, Q2 любой pnp но с "средним" током коллектора (0.3–2A). Совсем слаботочный на Q2 лучше не ставить, ведь он обеспечивает ток виброзвонка. Сам виброзвонок на 3–5V с не очень большим током, ведь мощность USB не беспредельна. У меня вся схема размещена в самой мышке, регулятор уровня внизу слева и не мешает игре, что удобно для регулировки во время игры. Виброзвонок приклеен к внутренней стороне верхней крышки mouse, там же и схема. Прижим виброзвонка может не дать надежного механического соединения, ведь уровень вибрации весьма значителен. При добавлении схемы общий вес мышки практически не изменился.


Вариант 20

Вар 22

Вар 26 Радиопробник

Так условно назовем эту конструкцию, которая окажет несомненную помощь при налаживании или ремонте различных радиоприемных, усилительных и генераторных устройств и позволит на слух проверять работу отдельных каскадов.
Пробник (рис.1) представляет собой широкополосный радиоприемник без органов настройки, с трехкаскадным усилителем радиочастоты. Транзисторы VT1, VT2 включены по схеме с общим коллектором, что обеспечивает достаточно большое входное сопротивление усилителя и позволяет подключать его входные гнезда Х1 и Х2 к соответствующим цепям проверяемого аппарата, не внося заметной расстройки контуров. Каскад на транзисторе VT3 усиливает сигнал по напряжению.

Рис.1 Принципиальная схема радиопробника

Режим транзисторов усилителя РЧ по постоянному току задается резисторами R1-R6. С нагрузки усилителя - резистора R5 - сигнал поступает на детекторный каскад, в котором работает диод VD1. Составляющая звуковой частоты продетектированного сигнала выделяется на резисторе R7, после чего усиливается каскадом на транзисторе VT4 - нагрузкой его служит головной телефон BF1.
Если нужно проверить звуковой тракт радиоприемника, электрофона либо проконтролировать работу генератора колебаний ЗЧ, провод со щупом на конце подсоединяют к гнезду ХЗ или Х4. Первое из них рассчитано на более слабый сигнал, через второе подают сигнал высокого уровня. При любом испытании гнездо Х2 соединяют с общим проводом исследуемого устройства. Питается пробник от гальванической батареи GB1, подключаемой выключателем SA1.
Детали пробника располагают на печатной плате (рис.2) из фольгированного стеклотекстолита либо на пластине обычного текстолита или гетинакса.

Рис.2 Печатная плата

Для усилителя РЧ, кроме указанных на схеме, годятся транзисторы КТ361В либо МП42Б, в усилителе ЗЧ хорошо работает любой транзистор из серий МП39-МП41. Диод детектора может быть любой из серии Д9, резисторы - МЛТ, МТ мощностью не менее 0,125 Вт, конденсаторы -оксидные К50-6(С5, С6) и КЛС (остальные). Телефон лучше взять типа ТОН-2, в качестве источника питания подойдет батарея 3336.
Собрав прибор и включив питание, полезно проверить соответствие токов транзисторов VT3, VT4 указанным на схеме. В случае значительных отличий подбирают соответственно резистор R1 или R8.
В заключение следует заметить, что при желании можно расширить функциональные возможности устройства: добавление магнитной антенны, подключаемой к усилителю РЧ отдельным выключателем, позволит вести прием местных радиостанций. Понятно, в этом случае придется несколько увеличить габариты корпуса и платы.

Вар 35 УНЧ

Предлагаем вниманию радиолюбителей простой и довольно мощный УНЧ, который не требует наладки. Усилитель развивает выходную мощность 70 Вт на нагрузку 4 Ом, диапазон воспроизводимых частот - 10…30000 Гц. Коэффициент гармоник при номинальной выходной мощности 0.1%, что довольно неплохо. Принципиальная схема усилителя показана на рисунке ниже.
Усилитель собран на высоковольтном ОУ (операционный усилитель) КР 1408УД1 (DA1). Предоконечный каскад выполнен на транзисторах КТ972 и КТ973, а оконечный на транзисторах КТ908А. Ток покоя усилителя не превышает 30 мА, для его стабилизации диоды VD1-VD4 должны находиться вблизи радиаторов транзистоорв выходного каскада. Для сборки конструкции использован резисторы МЛТ, все конденсаторы КМ-6. Диоды д220 могут быть заменены на любые высокочастотные. ВЫходные транзисторы неоходимо установить на радиаторы площадью 400 см^2.

Вариант 1

Микросхема усилителя НЧ TDA2030A фирмы ST Microelectronics пользуется заслуженной популярностью среди радиолюбителей. Она обладает высокими электрическими характеристиками и низкой стоимостью, что позволяет при минимальных затратах собирать на ней высококачественные УНЧ мощностью до 18 Вт. Однако не все знают о ее "скрытых достоинствах": оказывается, на этой ИМС можно собрать ряд других полезных устройств. Микросхема TDA2030A представляет собой 18 Вт Hi-Fi усилитель мощности класса АВ или драйвер для УНЧ мощностью до 35 Вт (с мощными внешними транзисторами). Она обеспечивает большой выходной ток, имеет малые гармонические и интермодуляционные искажения, широкую полосу частот усиливаемого сигнала, очень малый уровень собственных шумов, встроенную защиту от короткого замыкания выхода, автоматическую систему ограничения рассеиваемой мощности, удерживающую рабочую точку выходных транзисторов ИМС в безопасной области. Встроенная термозащита обеспечивает выключение ИМС при нагреве кристалла выше 145°С. Микросхема выполнена в корпусе Pentawatt и имеет 5 выводов. Вначале вкратце рассмотрим несколько схем стандартного применения ИМС - усилителей НЧ. Типовая схема включения TDA2030A показана на рис.1.

Микросхема включена по схеме неинвертирующего усилителя. Коэффициент усиления определяется соотношением сопротивлений резисторов R2 и R3, образующих цепь ООС. Вычисляется он по формуле Gv=1+R3/R2 и может быть легко изменен подбором сопротивления одного из резисторов. Обычно это делают с помощью резистора R2. Как видно из формулы, уменьшение сопротивления этого резистора вызовет увеличение коэффициента усиления (чувствительности) УНЧ. Емкость конденсатора С2 выбирают исходя из того, чтобы его емкостное сопротивление Хс=1 /2?fС на низшей рабочей частоте было меньше R2 по крайней мере в 5 раз. В данном случае на частоте 40 Гц Хс 2 =1/6,28*40*47*10 -6 =85 Ом. Входное сопротивление определяется резистором R1. В качестве VD1, VD2 можно применить любые кремниевые диоды с током I ПР 0,5... 1 А и U ОБР более 100 В, например КД209, КД226, 1N4007.


Вариант 2

Усилитель на TA8215

Ниже указаны основные его технические характеристики :
1) Напряжение питания, В……………………9…18
2) Номинальная выходная мощность при напряжении питания 13 В, Вт………2*15
3) Номинальная выходная мощность при напряжении питания 15 В, Вт……….2*18
4) Сопротивление нагрузки, Ом ……………..4
5) Коэффициент гармоник при выходной мощности 1 Вт, напряжении питания 13 В, сопротивлением нагрузки 4 Ом, на частоте 1 кГц (максимальный),% ……….0,04
6) Диапазон воспроизводимых частот …………….20…20000
7) Выходное напряжение при отсутствии сигнала, В ………….0,3
8) Интервал рабочих температур, С* ……………………-30…+60

Как уже говорилось раньше УМЗЧ изготовлен на основе микросхемы TA8215 внутри микросхема состоит из девяти функциональных узлов- два предварительных усилителя, два фазоинвертора, четыре оконечных усилителя мощности с мостовой схемой включения нагрузки (по два на канал) и узла мониторинга и защиты (от перегрузки оконечных усилителей и от превышения температуры корпуса микросхемы и пр.).

Уровень громкости регулируют переменным резистором R1, а переменный резистор R2 (группы А) корректирует баланс уровней сигналов в каналах. Резисторами R3 и R4 подстраивают чувствительность усилителя. Далее стерео сигналы через кондеры С1 и С2 поступают на выходы микросхемы. Усиленные микросхемой сигналы могут быть поданы на акустические системы соответствующей мощности. Корректирующие цепи R7C6, R8C7, R9C8 R10C9 улучшают устойчивость УМЗЧ. Напряжение питания фильтруется кондером С1 и подаётся на соответствующие выводы микросхемы, усилитель переводится в рабочий режим подачей напряжения на вход включения дежурного режима (stand-by). Который через резистор R6 попадает на вывод 4 микросхемы DA1 напряжение высокого Уровня. Светодиод HL1 сигнализирует о переходе УМЗЧ в рабочий режим.

Для изготовления стереофонического варианта усилителя используется одна микросхема TA8215Н (Р. макс 2*18 Вт) но вместо нее можно применить более дешевую микросхему-аналог из той же линейки ТА8215АН или ТА8205АL (Р= 2*18 Вт) с небольшими дополнениями. (к выводам 2 и 7 припаять соединяемые с общим проводом кондеры емкостью по 1000 пФ) предотвращающие самовозбуждение УМЗЧ на высоких частотах) можно применить ТА8210АН (Р= 2*22 Вт) в аналогичных корпусах, а для нагрузки сопротивление 2 Ом можно рекомендовать микросхемы ТА8220Н, ТА8221АН (2*30 Вт). Работа УМЗЧ была проверена с микросхемами ТА8205АН, ТА8215Н.
После сборки УМЗЧ не нуждается в налаживании и работоспособен сразу после подачи питания.

Монтаж и подбор деталей:
Провода питания и входных цепей должны быть достаточно толстыми (не менее 0.75 мм). Все провода входных цепей должны быть экранированными, желательно для каждого канала отдельно. Не следует допускать чтобы провода входных цепей располагались параллельно с проводами питания и выходными цепями УМЗЧ. Монтаж элементов УМЗЧ может быть как навесным так и выполненным на печатной плате. Но в любом случае все соединительные проводники между выводов микросхемы и элементами усилителя должны быть как можно короче. Микросхема должна иметь хороший тепловой контакт с теплоотводом соответствующего размера (площадью не менее 500 см) для уменьшения размеров можно использовать ребристый теплоотвод с вентилятором от процессора ПК. Теплоотвод должен быть обязательно соединен с общим проводом электрического контакта теплоотводящей поверхности усилителем микросхемы! при подключении акустических систем необходимо соблюдать полярность. Следует учесть, что для мостовых усилителей характерен выход из стоя при замыкании выходов микросхемы на общий провод или при ошибочной подачи на нее напряжения питания обратной полярностью если допустить небольшое изменение характеристик УМЗЧ с этой микросхемой то можно допустить отклонение параметров элементов схемы указанных на рис1 в относительно широких пределов. Сопротивление резистора Р1 допускается в пределах 10…47кОМ; Конденсаторы С1 и С2 могут быть емкостью 1…10 мкФ на напряжение 6,3-100 В; Р5-Р 1,2…2 кОм; Р7-Р10 – 2…10Ом; конденсаторы С3-С5 – 30…100 мкФ на напряжение 6,3-100 В; С4 – 100…500 мкФ на напряжение 10-100 В; С10 – 100…470мкФ на 16-100 В; С6-С9 - 0,1…0,5 мкФ; светодиод НЛ1 серии АЛ102 и ему подобные любого цвета свечения.

Вариант 3

Блок питания:
Для питания УМЗЧ необходимо использовать мощный стабилизированный источник питания (микросхема ТА8215Н при максимальной мощности потребляет ток около 3 А). схема блока питания приведена на рис 3. его включение и выкл. Производят одной кнопкой СБ1. в качестве К1 использовано реле РЭС22 (рф4.523.023-00). Понижающий трансформатор должен обеспечивать напряжение на вторичной обмотке 17…20 В при токе не менее 3 А. напряжение на базе транзистора ВТ1 стабилизирует микросхема ДА1, напряжение стабилизации которой устанавливает построечным резистором Р2. перед подключением БП к усилителю необходимо регулировкой этого резистора добиться на выходе БП постоянного напряжения равного 15 … 16 В. БП не критичен к деталям важно только чтобы уровни напряжения и мощности рассеяния не превышали допустимых значений. Даже при повышенном напряжении в сети.


Вариант 4

Усилитель мощности
За основу взята статья А.Чивильча «Повышение мощности усилителя на микросхеме TDA7294» из журнала РАДИО №11 2005г., поскольку усилитель не один раз был испытан мной и отмечался достаточно большой надежностью, большой выходной мощностью, качественным басом. Схема усилителя приведена ниж. От оригинала отличается лишь заменой выходных транзисторов на более качественные импортные.

Не буду углубляться в принцип работы схемы, об этом более детально можно прочитать в оригинале статьи. Расскажу лишь принципиальные закономерности составления схемы. Собрана она на плате размерами 125х70мм. Все не электролитические конденсаторы, кроме С2, плёночные, входной емкостью 1мкф, можно 2.2мкф. Резисторы 0.25Вт, хотя достаточно и 0.125Вт. Выходные транзисторы загнуты и прижаты к плате так, что их корпуса расположены параллельно плате а их теплоотводная часть промазана термопастой и через диэлектрическую пленку прижатая к радиатору. То есть корпуса транзисторов изолированы один от другого и от радиатора. Катушка индуктивности L1 бескаркасная, намотанная проводом диаметром 1мм в два слоя и содержит 25 витков, внутренний диаметр 5мм. Предохранители перенесены на плату выпрямителя.


Вариант 5

Предварительный усилитель на КР140УД1Б

Вашему вниманию предлагается предварительный усилитель с темброблоком. Усилитель этот начального уровня, но при своей простоте параметры у него вполне приличные.

Основные характеристики следующие:

Смотрим схему:

Как уже говорилось выше, усилитель собран на микросхеме КР140УД1Б. В цепь обратной связи включен регулятор тембра. Регулировкой по высоким частотам занимается резистор R11, а по низким - R6. Ну а резистором R10 регулируется уровень выходного сигнала


Вариант 6

Электронный регулятор громкости на KA2250

Микросхема представляет собой электронный регулятор громкости со следующими параметрами:

Диапазон регулировки, дБ 0…66

Шаг регулировки, дБ 2

Рабочая полоса частот, Гц 20…20000

Коэффициент гармоник, % 0,005

Напряжение питания, В 3…16

Табличка со списком элементов:

Обозначение на схеме Номинал
C1 4,7мкФ
C2 4,7мкФ
C3 4,7мкФ
C5 4,7мкФ
C6 4,7мкФ
C7 4,7мкФ
C4 22мкФ
C8 4,7мкФ
C9 100мкФх15В
R1 10k
R2 22кОм
R4 22кОм
R5 33кОм
R6 100кОм
R3 51кОм
R7 10k
S1
S2 Любой кнопочный без фиксации
VD1 КД503
VD2 КД503
VD3 КД 503
Микросхема КА2250

Вариант 7

Жучок

Она имеет стабильные и честные параметры :
Iпотр=25-30мА при Uпит=9В
Дальнобойность 350 метров (проверялось в поле с приемником китайского производства стоимостью 300 рублей)
Чувствительность по микрофону как у всех подобных (в тихой комнате слышно тиканье настенных часов)

Устройство собрано: электретный микрофон как все знают в своем составе он имеет полевой транзистор, поэтому на него нужно подавать напряжения питания для этого установлен резистор R1. Конденсатор С2 корректирует низкочастотную составляющею и блокирует ВЧ связь микрофона и антенны. Переменную составляющею сигнала микрофона фильтрует С3. Теперь сигнал еще дополнительно усиливается для получения нужной глубины девиации ЗЧ усилитель собран на транзисторе VT1. Подбором резистора смещения R2 в цепи базы в транзисторе VT1 нужно добиться половины напряжения питания на его коллекторе, хотя это и не обязательно. Усилитель ЗЧ и генератор ВЧ связаны между собой непосредственно. Сигнал модуляции НЧ поступает сразу на базу транзистора VT2 и на нем собран генератор ВЧ по схеме банальной « трехточьке». Добиться устойчивой генерации можно изменяя емкость обратной связи С7 в небольших приделах или замена транзистора на другой (но это процедура требуется кране редко). Сигнал ВЧ выделяется на контуре состоящим из элементов L1С6. Этот контур настроен на частоту 96 мегагерц в пределах 5-6 МГц можно ее изменять сдвигая или раздвигая витки каким либо не металлическим предметом. Подойдет спичка деревянная зубочистка и.т.п. Теперь промодулированый ВЧ сигнал через С8 поступает на усилитель ВЧ собранный на транзисторе VT3 в его базываю цепь включен контур состоящий из катушке L2 и конденсаторов C9 и C10 на этот контур служит активной нагрузкой транзистора VT3 при настройке передатчика нужно его настроить в резонанс с частотой генератора. Это можно сделать, подключив миллиамперметр в цепь питания всего устройства и настраивать по достижению минимального тока потребления и максимальной дальности. Для подключения антенны сделан конденсаторный делитель С9 и С10 не самое лучшее решение, зато избавляет от необходимости снимать ВЧ напряжение с части витков катушки L2. В качестве антенны жучка применялись простые многожильные провода длинною 40 сантиметров.


В большинстве регуляторов громкости низкочастотного сигнала используют аналоговые плавные регуляторы на базе операционных усилителей или транзисторных схем. В ряде регуляторов применяют прин­цип дискретного управления величиной выходного сигнала, причем дискретность установки уровня выбирается, как правило, равной 3 дБ. Это обусловливается тем, что такой дискрет уровня удобен для про­слушивания музыкальных программ. Однако для качественной пере­записи фонограмм требуется изменение уровня сигнала в меньшем диапазоне. Один из возможных путей преодоления этих труднос­тей - применение преобразователей код-напряжение, коммутируемых электронными переключателями. Но в этом случае неоправданно воз­растают габаритные и стоимостные показатели такого узла. Немало­важное значение имеют и показатели надежности и трудоемкости нала­дочных работ изготовляемого узла. Более простой путь решения этого вопроса - использование микроэлектронных цифроаналоговых преобра­зователей, например, серии 572. Эта серия обладает низкой потреб­ляемой мощностью, совместимостью со стандартными ТТЛ и К.МОП уровнями, возможностью работы от одного источника питания.

В предлагаемом регуляторе громкости изменение уров­ня сигнала осуществляется посредством схемы управле­ния, построенной с использованием устройства управле­ния реверсивным цифровым счетчиком. Изменяемый цифровой код подается на входы цифроаналогового преобразователя со схемой коррекции. Для контроля за изменением цифрового кода, а следовательно, и уровнем выходного сигнала служит схема индикации, построенная на реверсивном счетчике и дешифраторе двоичного кода в семисегментный код светодиодных матриц.

Рис. 1. Принципиальная схема регулятора

Принципиальная схема регулятора изображена на рис. 1. Регулятор позволяет изменять уровень выходного сигнала и в ых в интервале частот от 20 Гц до 150 кГц с коэффициентом гармоник не более 0,01 % при входном сигнале 1 В. Шаг изменения уровня сигнала соответ­ствует значению 50 мВ. Выходное напряжение изменяется от 0 до 5 В. Неравномерность АЧХ устройства в полосе частот от 20 Гц до 150 кГц не более ±0,5 дБ. Величина выходного напряжения индицируется цифровым кодом на табло двух семисегментных индикаторов типа АЛС 333 Б. Изменение уровня сигнала осуществляется с помощью двух кнопок «Pf» и «F|». Собственно преобразователь уровня сигнала собран на 10-разрядном умножающем ЦАП К572ПА1А, который является универсальным струк­турным звеном ЦАП и управляется цифровым кодом. Все элементы ЦАП выполнены в одном кристалле, разме­щенном в 16-выводном металлокерамическом корпусе. В состав кристалла входят: прецизионная резистивная матрица R-2R, токовые ключи на МОП транзисторах и входные инверторы, обеспечивающие управление клю­чами от стандартных уровней цифрового сигнала. Микро­схема работает с прямым параллельным двойным кодом. Для ее функционирования необходимы: внешний источ­ник опорного напряжения, роль которого выполняет входной сигнал звуковой частоты (вывод 15 - вход) и вы­ходной операционный усилитель DA1, который подключа­ется инвертирующим входом к выводу 1 DD10 и тем самым обеспечивается отрицательная обратная связь, и двоичный закон распределения токов в ветвях резистивной матри­цы при равенстве потенциалов выводов 1 и 2 DD10. Неин­вертирующий вход ОУ соединен с выводом 2 и 3 на «землю» (аналоговую). Отличительная особенность схемы данного ОУ заключается в возможности поддержания с высокой точностью большого значения коэффициента усиления при замкнутой цепи отрицательной обратной связи. Малые температурные дрейфы обеспечиваются внутренним включением входных транзисторов дифферен­циального каскада ОУ. Балансировка симметричности работы усилителя осуществляется за счет резистора R26, который позволяет получить симметричную характерис­тику усиления и снизить коэффициент нелинейных искаже­ний.

Отличительной особенностью ЦАП К572ПА1А являет­ся возможность его работы в режиме независимости сопротивления открытых МОП транзисторов от амплитуды и направления протекающего тока, что позволяет изме­нять входное напряжение по амплитуде в широких пределах без нарушения линейности преобразования. Максимальное значение амплитуды переменного напря­жения 5 В.

Управление токовыми ключами осуществляется реверсивными счетчиками DD8 и DD9, которые по­лучают импульсы изменения состояния от устройства управления счетчиком DD1 - DD3 При кратковременном нажатии на кнопку «Ff» («F|») переключается триггер на элементах DD1.1,DD1.2 (DD2.1, DD2.2). Короткий отрицательный импульс, сформированный дифференци­рующей цепью C1R21 (C2R22), через элементы DD1.3, DD1.4 (DD2.3, DD2.4) воздействует на вход +1 (- 1) микросхем DD8, DD6 и переводит реверсивные счетчики в состояние, соответствующее большему (меньшему) на единицу числу. Выходные сигналы счетчика переключают входы DD10, увеличивая или уменьшая выходной сигнал. Состояния счетчиков DD6, DD7 дешифруются микросхе­мами DD4, DD5 и отражаются на индикаторах. Так как выход микросхемы DD7 (> 9<) соединен со входом С этой микросхемы и одноименными входами DD8, DD9, а выход < 0> - через инвертор DD3.4 с их входами Ro, то при достижении состояний, соответствующих чис­лам 99 (при нажатой «Ff») и 00 (при нажатой «FJ»), счетчик останавливается. При длительно нажатой кнопке «Ff» или «FJ» на выходе элемента DD3.1 устанавли­вается уровень логической 1 и конденсатор С4 начинает заряжаться через резистор R24. В момент, когда напряже­ние на конденсаторе достигает уровня логической 1 (при­мерно через 1,3 с), включается генератор на элементах DD3.2, DD3.3, и его импульсы с частотой около 8… 12 Гц следуют через элементы DD1.3, DD1.4 (DD2.3, DD2.4) и также поступают на выход -f- 1 { - 1) микросхемDD6, DD8, непрерывно изменяя состояние счетчиков DD6 - DD9, в сторону увеличения (уменьшения) соответствую­щего ему числа до предельного значения. Импульсы управления счетчиком одновременно поступают на узел индикации, который выполнен на счетчиках DD6,DD7, дешифраторах DD4, DD5 и светодиодных матрицах.

В электронном регуляторе использованы постоянные резисторы МЛТ-0,125; подстроечный резистор R26 СПЗ-19а; конденсаторы С1, С2 - КМ5, СЗ - С5 - К52-16.

Вместо указанных на схеме деталей можно использо­вать: АЛС324Б (HG1, HG2); КД102А - В, КД520А, КД521, КД522 (VD1); К50-16 (СЗ, С5); 140УД20, 140УД6, 140УД7, 140УД8, 153УД1, 574 УД 1, 574УД2 (DA1). Вместо всех микросхем 155 серии можно исполь­зовать 133 серию, но тогда придется внести небольшую корректировку, которая заключается в применении сов­местно с микросхемами 133 серии переходных колодок. Колодки содержат печатные дорожки под 133 серию, а дорожки контачат с колами, выведенными с противо­положной стороны колодки и имеющими расположение размеров выводов 155 серии. Колодки с распаянными микросхемами и колами вставляются в отверстия, пред­назначенные для микросхем 155 серии в плате и про­паиваются.

Все детали размещены на плате из фольгированно-го стеклотекстолита СФ1-1,5. Монтаж перемычек на пла­те выполнен проводом МГТФ или ШБПВЛ. Чертеж печатной платы показан на рис. 2, а расположение элементов на ней - на рис. 3.

Налаживание регулятора начинают с проверки монтажа, затем проверяется работа счетчиков: при каж­дом нажатии на кнопку «Ff» или кнопку «FJ» показание индикаторов должно соответственно увеличиваться или уменьшаться на единицу. При длительном нажатии на эти же кнопки показания индикаторов должны нарастать или убывать до тех пор, пока они не окажутся рав­ными 99 или 00. Работоспособность счетчиков указы­вает на работоспособность всей схемы управления.

Потенциальные возможности ЦАП 572ПА1А в данной схеме используются не полностью, так как он способен обеспечить 256 ступеней регулировки уровня громкости, но они ограничены до 100 ступеней двухразрядным деся­тичным индикатором. Недостаток, связанный с линей­ным законом регулирования уровня громкости, компен­сируется большим количеством ступеней регулировки и возможностью быстрой регулировки при длительном на­жатии кнопки.

Начальное состояние регулятора при включении пи­тания соответствует нулевому уровню благодаря подключению выводов Д1, Д2, Д4 и Д8 микросхем DD6 - DD9 к «земле».

Питание электронного регулятора громкости осу­ществляется от двух источников. Операционный усилитель DA1 питается от двуполярного источника напряжения ± 5 В с током потребления 15 мА. Остальные элементы регулятора питаются от источника с напряжением 5 В с током потребления 350 мА. Допустимая пульсация напряжений источников питания не должна превышать 5 мВ.

Рис. 2. Чертеж печатной платы

Рис. 3. Расположение элементов на плате

Литература

  • В помощь радиолюбителю: Сборник. Вып. 104/ Б. Колобов